从测验的理论来说,只有等比量表才使平均数等于零成为不可能。也就是说,用来测量的量尺,既具有等距的单位,又具有绝对零点,这时所测量出的数据其平均数才不可能等于零,这时才能计算差异系数。
线形图用来表示连续性资料。它能表示两个变量之间的函数关系;一种事物随另一种事物变化的情况;某种事物随时间推移的发展趋势等。
是指表示一组数据变异程度或离散程度的量。差异量越大,表示数据分布越广,越不整齐;相反,表示分布越集中,变动范围越小。
【积差相关】当两个变量都是正态连续变量,而且两者之间呈线*时,表示这两个变量之间的相关称为积差相关。
将一组原始数据依大小顺序排列后,若总频数为奇数,就以位于*的数据作为中位数;若总频数为偶数,则以最中间的两个数据的算术平均数作为中位数。
从二项分布图可以看出,当p=q,不管n多大,二项分布呈对称形。当n很大时,二项分布接近于正态分布。当n趋近于无限大时,正态分布是二项分布的极限。
【回归分析】如果我们将存在相关的两个变量,一个作为自变量,另一个作为因变量,并把两者之间不十分准确、稳定的关系,用数学方程式来表达,则可利用该方程由自变量的值来估计、预测因变量的估计值,这一过程称为回归分析。
教材学习:按照章节顺序学习其中的内容。重点理解和掌握教育统计学的基本理论、数据收集方法、数据分析技术等方面的知识。
(2)教育实验。分为单组实验(指对同一实验对象先后实施两种实验处理)、等组实验(指在甲乙两组条件基本相同的情况下,对之实行不同的实验处理)和轮组实验(指在实验组和对照组分别进行两种实验处理,并且每种处理各重复一次,也即每个或多个单组实验的联合)
平均差意义明确,计算容易,每个数据都参加了运算,考虑到全部的离差,反应灵敏。但计算要用绝对值,不适合代数运算。
(3)若一组观察值是由两部分(或几部分)组成,这组观察值的算术平均数可以由组成部分算术平均数而求得;
差异量是表示一组数据变异程度或离散程度的一类特征量。我们可以通过计算所搜集数据的差异量来反映数据分布的离散程度,差异量越大,说明数据分布的范围越广,分布越不整齐;差异量越小,说明数据变动范围越小,分布就越集中。
总体:总体是我们所研究的具有某种共同特性的个体的总和。样本是从总体中抽出的作为观察对象的一部分个体。
有话要说...