由于影子价格是指资源增加时对最优收益的贡献,所以,也称它为资源的机会成本或边际产出,它表示资源在最优产品组合时,具有的“潜在价值”或“贡献”。资源的影子价格是与具体的企业及产品有关的,同一种资源,在不同企业,或生产不同产品时对应的影子价格并不相同。
即△Z=yi△bi=yi。所以yi表示在原问题已取得最优解的情况下,第i种资源改变一个单位时总收益的变化值,也可以说yi是对第i种资源的一种价格估计。这种价格估计并不是第i种资源的实际价值或成本,而是由该企业在制产品的收益来估计所用资源的单位价值,称为影子价格。
利用单纯形表求解线性规划,在求得最优解的同时,很容易得到问题的各种资源的影子价格。某资源的影子价格,就是该资源对应的约束条件所加松弛变量在最优表中的检验数的相反数。
影子价格是经济学中的重要概念,将一个企业拥有的资源的影子价格与市场价格比较,可以决定是购入还是出让该种资源。当某资源的市场价格低于影子价格时,企业应该买进该资源用于扩大生产;而当市场价格高于影子价格时,则企业的决策者应该将已有资源买掉。这样获利会更多。在考虑一个地区或一个国家某种资源的进出口决策中,资源的影子价格是影响决策的一个重要因素。
从对偶问题引出的实例中,可以看出,影子价格也是企业出让资源的最低价格,企业按这种价格出让资源与用这种资源自己生产所获得的收益是相等的。
对偶线性规划的经济背景是:若原问题是利用有限资源安排最优生产方案,以获得最大总产值的线性规划问题,则它的对偶问题就是在相同资源的条件下,正确估计资源的使用价值,以达到支付最少费用的线性规划问题。简言之,若原问题为求解资源的最优配置问题,则对偶问题就是求解估价资源的使用价值问题。
(内心OS:王老板做家具赚了大钱,可惜我老李有高科技产品,却苦于没有足够的木工和油漆工咋办?只有租咯)
给定一个线性规划原问题,如何写出其对偶问题呢?这里我们介绍两种情况下的变换方式:(1)对称型对偶问题;(2)非对称型对偶问题
是否每个约束的右端项都是非负?如果是的话,最优解已经被找到。如果不是,那么至少有一个约束的右端项是负数,然后进入Step2;
(内心OS:家具生意还真*,但是现在的手机生意这么好,不如干脆把我的木工和油漆工租给他,又能收租金又可做生意)
如果还有右端项为非负的约束并且该约束每个系数全都非负,那么LP问题无可行解。如果没有发现不可行,那么返回Step1.
选择最小负值对应的基变量出基。为了选择入基变量,对于哪些具有非负系数的非基变量,我们计算Row0与系数的比值,其中最小正比值对应的非基变量入基。这种形式的比值保证了对偶可行。然后使用初等行变换进行出基和入基操作;
一个约束称为“松约束”,不是紧约束的约束称为松约束,即把某一最优解处取严格不等式的约束称为松约束(或不起作用约束)。
对偶理论是线性规划中最重要的理论之一,是深入了解线性规划问题结构的重要理论基础。了解线性规划与其对偶问题之间的关系,对于理解线性和非线性规划的高级专题具有重要作用。
有话要说...