(1)标准差是衡量一项概率分布中,随机变量的取值围绕其均值(平均数)上下波动的情况。在投资分析中,标准差可以体现投资报酬率偏离期望报酬率的波动程度或离散程度,标准差是方差的平方根。
当期望报酬率水平不同时,直接用标准差来衡量不同投资的风险水平或不确定性程度,会带来误导性的结论。而计算变异系数,可以剔除期望报酬率差异的影响。变异系数(CV)是一个衡量风险的相对指标。
(2)期望报酬率是以投资报酬率每一种的取值所发生的概率为权重,对所有可能的取值进行加权平均的结果。它衡量的是投资报酬率概
4,频数表的用途:揭示资料分布类型和分布特征,以便选取适当的统计方法;便于进一步计算指标和统计处理;便于发现某些特大或者特小的可疑值。
(3)确定P值并做出推断结论。若t≥tα,v,则P≤α,按检验水准,拒绝H0,接受H1,尚可认为差异显著有统计学意义;相反则差异不显著,无统计学意义
检验。结论为拒绝H0,只能认为各总体率或总体构成比之间总的说来有差别,但不能说明它们彼此间都有差别,或某两者间有差别。若要进一步解决此问题,可用卡方分割法。
2),两样本率比较:两个样本率作比较的目的是推断两个样本各自代表的两总体率是否相等,当两个样本满足正态近似条件且样本含量较大时,可用u检验,其公式:
区别:(1)含义不同:标准差S表示观察值的变异程度,描述个体变量值(x)之间的变异度大小,S越大,变量值(x)越分散;反之变量值越集中,均数的代表性越强。标准误
(1)资料不符合参数统计法的应用条件(总体为正态分布、且方差相等)或总体分布类型未知;(2)等级资料;(3)分布呈明显偏态又无适当的变量转换方法使之满足参数统计条件;(4)在资料满足参数检验的要求时,应首选参数法,以免降低检验效能。
适用于分类变量资料中推断两个或多个总体率(或构成比)之间有无差别,两个分类指标之间有无相关关系的检验以及检验频数分布的拟合优度。
很小,样本含量n趋向于无穷大时,二项分布的极限形式。更多地用于研究单位时间、单位人群、单位空间内,某罕见事件发生的次数的分布。
(二)方法步骤:1,建立检验假设,确定检验水准;2,计算检验统计量T值:a,求各对的差值;b,编秩;c,求秩和,确定统计量T;3,确定P值,做出推断结论。
)%估计总体均数所在的范围,亦称可信区间(confidenceinterval,CI)。常取的可信度为95%和99%,即95%可信区间和99%可信区间。计算方法有3种:
有话要说...